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Abstract. The recent improvements on the technology for developing high-quality thin magnetic films has
renewed the interest in the study of surface effects in both static and dynamic magnetic responses. In this
work, we use a Monte-Carlo algorithm with Metropolis dynamics together with a spreading of damage
technique to study the interplay between the effects of finite thickness and surface ordering field in thin
ferromagnetic Ising (S = 1/2) films. We calculate, near the bulk critical temperature and several values
of the surface field, the dependence on the film thickness of the average magnetization M and Hamming
distance D. We employ a finite size scaling analysis to show that both obey an effective one-parameter
scaling but exhibit distinct characteristic surface fields. At their corresponding characteristic surface fields
both M and D become roughly thickness independent and we estimate the critical exponent characterizing
the behavior of the typical scaling lengths.

PACS. 75.70.Ak Magnetic properties of monolayers and thin films – 75.40.Mg Numerical simulation studies
– 75.40.Cx Static properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.)

1 Introduction

The effects of surfaces on the critical behavior of layered
magnetic structures have been studied intensively in the
past years [1]. The increasing interest in the understand-
ing of finite-size and surface effects on films is mainly due
the recent improvements in the experimental techniques
for preparing high quality thin films. Such systems in-
clude magnetic overlayers, sandwiches and superlattices,
displaying a great variety of unusual properties [2]. The
presence of free surfaces, which may be subject to surface
fields due to substrates or adjacent magnetic layers, leads
to non-homogeneous behavior in the film which makes the
determination of the bulk properties particularly difficult
[3].

In the theory of phase transitions on Ising films with
free surfaces, the spins on the surface layers are generally
supposed to interact with each other with an exchange
integral Js different from the bulk exchange integral Jb

and/or to be under the action of surface ordering fields [4].
Therefore, there is a competition between the finite thick-
ness effect which favors the disordered phase and the or-
dering effects due to these surface enhancing operators.
For example, for Js above a critical value Jsc > Jb, the
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system orders on the surface before it becomes ordered in
the bulk [5]. Also, the unusual behavior of the specific heat
of free-standing liquid crystal films [6] has been related to
the interplay between surface ordering and finite size ef-
fects [7,8]. So far, attention has been focused mainly on
static properties. However, near a critical point a variety
of dynamic critical phenomena, such as the critical slow-
ing down, also occur [9]. Since surface effects modify the
critical behavior of local static quantities as the order pa-
rameter density near the surface, a natural question that
arises is about its possible effects on local dynamic prop-
erties [10].

On the other hand, the spreading of damage technique
has been widely used to study the critical properties of
Ising-like systems [11–13]. This technique is based on the
synchronous Monte-Carlo update of two distinct spin con-
figurations which initially differ on a given set of lattice
sites. The Monte-Carlo updates are identical in the sense
that the same set of random numbers is used to update
each spin configuration. As the Ising model does not have
an intrinsic dynamics, it is chosen as a particular one,
commonly among the Metropolis, Glauber and heat-bath
dynamics. The results depend to a great extent on the
dynamics chosen as opposed to what occurs in the usual
statistical Monte-Carlo modeling [14]. The Hamming dis-
tance D is defined as the fraction of spins that are differ-
ent in the two configurations averaged along the Markov
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chain. It displays a critical behavior at the so called crit-
ical spreading temperature Ts. Recently, the spreading of
damage technique with the Metropolis dynamics was used
to study a layered S = 1/2 Ising ferromagnetic thin film
with an enhanced surface coupling constant [15]. The tem-
poral evolution of the damage front was followed and two
distinct spreading regimes were found near and above the
bulk critical spreading temperature.

Throughout this paper, we investigate the behavior of
layered S = 1/2 Ising ferromagnetic thin film subject to
a magnetic field in both free surfaces. We will study as
the magnetization changes with the film thickness and the
applied surface field. We will use the Monte-Carlo simula-
tion with Metropolis dynamics. Besides this, we will ap-
ply the spreading of damage technique based also on the
Metropolis algorithm in order to compare the Hamming
distance behavior with the magnetization at the bulk crit-
ical temperature. The outline of the paper is as follows:
In Section 2 we will define the model and the Metropo-
lis dynamics in the context of the spreading of damage
technique. Section 3 deals with the evolution of the mag-
netization and the Hamming distance in function of the
magnetic field and the film thickness, for a lattice with
L× L ×N sites near criticality. Finally, in Section 4, we
will summarize our conclusions.

2 The model and the Metropolis algorithm

Let us consider the nearest-neighbor interaction Ising
ferromagnet (S = 1/2) on a layered geometry with a
magnetic field Hs applied in both free surfaces. The
Hamiltonian can be written in the following general form:

H = −
N−2∑
λ=1

∑
〈i,j〉

Jb S
z
i,λS

z
j,λ −

2∑
α=1
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l,αSm,α
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2∑
α=1

∑
l

Sl,α −
N−1∑
ν=1

∑
p

Jt S
z
pνS

z
pν+1, (1)

where N is the total number of the layers. The first sum
corresponds to the spin interactions within the inner lay-
ers, the second sum is the contribution of the surface
spin interactions, the third one corresponds to the inter-
action between the external field and all the spins in both
the top and bottom surfaces. Finally the fourth one is
the interaction energy between adjacent layers. In what
follows, we will consider only physical situations where
Jb = Js = Jt = J but keep a positive surface field Hs. To
approximate the infinite system by the finite lattice we
use periodic boundary conditions for those directions in
which the crystal is infinite, keeping free boundary condi-
tions for both surfaces of the film. The linear size of the
system considered in our simulation was 20× 20×N and
40× 40× N , with N ranging from 3 up to 12 layers. We
performed L× L×N (L = 20, 40) Monte-Carlo steps per
spin (MCS/spin) in order to achieve thermal equilibrium
of an initial random spin configuration. We use Metropo-
lis dynamics in the sense that each spin is flipped with
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Fig. 1. The average magnetization M versus the number of
layers (N) for several surface magnetic fields at the bulk critical
temperature.

probability:

pi(t) = min(1, e−2βSihi(t)), (2)

where β = 1/kBT and hi(t) = (J+H ′)
∑
j Sj(t). H

′ = Hs

if the spin belongs to a surface layer and is equal to zero
otherwise. Once thermal equilibrium is reached we cal-
culate the magnetization and average over L × L × N/3
different initial configurations for the same value of tem-
perature. At the same time, i.e. in thermal equilibrium ,
a copy of the spin configuration is made and one flips one
of its spins belonging to a randomly chosen layer. Both
copies are let to evolve along the Markov chain governed
by the same random numbers. In order to investigate the
equilibrium properties of the Hamming distance, we let
both copies to evolve under the above dynamical rules for
an additional L× L×N MCS/spin. After that, we com-
pare the two configurations A and B and evaluate the
microscopic Hamming distance given by:

〈D(t)〉 =
1

4N ′
∑
i

〈(SAi (t)− SBi (t))2〉, (3)

where A and B indicate, respectively, the thermalized lat-
tice and its image, N ′ is the number of sites and the brack-
ets represent the configurational average over a large num-
ber of subsequent spin configurations. We usually took
L×L×N/3 additional configurations. The damage is rein-
troduced whenever the two configurations become identi-
cal or symmetrical [15].

3 The magnetization and Hamming distance
thickness dependence

At first, we study the thickness dependence of the magne-
tization near the critical temperature of the bulk Ising
model (kBT/J = 1.095) for several values of the sur-
face magnetic field (Hs ranging from 0.10 to 0.50). Our
results are shown in Figure 1. Data are from Monte-
Carlo runs on lattices with 20 × 20 × N sites. We also
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Fig. 2. Data collapse of the magnetization versus N curves.
Data from Hs = 0.05 and Hs = 0.50 were used as reference.
The scaling lengths ξM were estimated in order to obtain the
best data collapse. Different symbols stand for different N .

performed a few runs on lattices with 40 × 40 × N
which presented similar results. We observe that for Hs

lower than a characteristic value H∗s = 0.19 the average
total magnetization (M) increases when the number of
layers is increased showing the predominant role played
by the finite thickness which favors large spin fluctuations.
For Hs > H∗s the surface ordering becomes predominant
and M decreases with the layers number changing its con-
cavity. At Hs = H∗s finite size and surface ordering effects
are balanced and M becomes roughly independent of the
number of layers. The above behavior can be described
as an underlying correction to scaling due to a change
in sign of a L-dependent term as the surface field is in-
creased. However, if we concentrate our attention on the
range of surface fields around H∗s , the above picture can
effectively be considered as the typical finite-size scaling
behavior of a zero-exponent quantity. Following standard
finite size scaling arguments, the average magnetization is
considered to obey a one-parameter scaling on the form

M = f±[N/ξM(Hs)], (4)

with ξM (Hs) ∼ |Hs − H∗s |Φ representing the characteris-
tic thickness governing the approach of the magnetization
to its thermodynamic limit. For N � ξM the average
magnetization is strongly sensitive to the presence of the
surfaces while for N � ξM the magnetization becomes
thickness independent. f± are distinct scaling functions
for surface fields higher (+) and lower (−) than the char-
acteristic field H∗s . M(Hs = H∗s ) = f±(∞) independent of
the film thickness. In Figure 2, we employ a data collapse
of the M × N curves choosing the data from Hs = 0.05
and Hs = 0.50 as reference curves below and above H∗s
respectively. The ξM (Hs) values are estimated in order to
obtain the best data collapse. In Figure 3, we plot the so
obtained dependence of ξM on Hs which shows a power-
law behavior near Hs = H∗s = 0.19 with Φ = 1.0 ± 0.1.
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Fig. 3. 1/ξM versus Hs for the average magnetization. In the
inset we show the power-law behavior near H∗s = 0.19. The
straight line has slope 1.
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Fig. 4. The Hamming distance (D) versus the number of lay-
ers (N) for several surface magnetic fields at the bulk critical
temperature.

We applied the above analysis about the interplay be-
tween thickness and surface field on the average Hamming
distance in the stationary regime. We observe a very sim-
ilar behavior with D displaying a roughly thickness in-
dependent behavior at a characteristic surface field and
distinct trends for lower and higher fields (see Fig. 4).
However the trends are reversed as compared to the mag-
netization behavior. This is related to the fact that, within
the Metropolis dynamics, the damage is more likely to
spread in the absence of long-range order and therefore a
strong surface ordering field suppress the Hamming dis-
tance. A second relevant point is that the characteristic
surface field is H∗s = 0.15, about 20% lower than the one
obtained for the magnetization. Following the same proce-
dure used to obtain the effective surface scaling behavior
of M , we collapse the Hamming distance data onto a scal-
ing form (see Fig. 5)

D = g±[N/ξD(Hs)] , (5)
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Fig. 5. Data collapse of the Hamming distance versus N
curves. Data from Hs = 0.01 and Hs = 0.28 were used as refer-
ence. The scaling lengths ξM were estimated in order to obtain
the best data collapse. Different symbols stand for different N .

0.0 0.1 0.2 0.3 0.4
Hs

0.0

2.0

4.0

6.0

8.0

10.0

1/
ξ D

(H
s)

-5.0 -4.0 -3.0 -2.0
ln(|Hs-0.15|)

0.0

1.0

2.0

3.0

-l
n[

ξ D
(H

s)
]

Fig. 6. 1/ξD versus Hs for the Hamming distance. In the inset
we show the power-law behavior near H∗s = 0.15. The straight
line has slope 1.

with the estimated field dependence of ξD shown in
Figure 6. It also shows a power-law behavior near H∗s =
0.15 with Φ = 1.0± 0.1.

4 Conclusions

In this work we have investigated the critical behavior
of the magnetization and Hamming distance in S = 1/2
Ising layered films under the presence of a magnetic field
applied to both free surfaces. We showed that these quan-
tities exhibit an effective scaling behavior as a function of
the film thickness. The scaling behavior is characterized
by the existence of a typical length scale that governs the
interplay between finite thickness and surface ordering
field effects. At a characteristic surface field this typi-
cal length scale vanishes reflecting the fact that, at this

point, finite thickness and surface ordering effects are bal-
anced in such a way that the order parameter becomes
thickness independent. We obtained that the character-
istic surface field for the Hamming distance is somewhat
lower than the one for the magnetization. We should point
out here that it has been well established in the literature
that static and dynamic phase transitions may present
distinct critical parameters [16–18] as is the case reported
in the present work. However, we obtained that the van-
ishing of the typical length scales are characterized by the
same critical exponent for both static and dynamic re-
sponses. A very natural extension of the present work is
to investigate the possible existence of a dynamical coun-
terpart to the wetting-like transition in Ising films which
appears when competing surface and bulk ordering fields
are present [19–21]. We are currently working along this
direction.
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